วันพฤหัสบดีที่ 29 กันยายน พ.ศ. 2559

ข้อสอบพร้อมเฉลยฟิสิกส์ เรื่องแรงและการเคื่อนที่


                แบบทดสอบ เรื่อง แรงและการเคลื่อนที่

1. สาเหตุที่ทำให้เครื่องกลมีประสิทธิภาพในการทำงานต่ำ คืออะไร

. แรงดึงน้อย                          . แรงเสียดทานมาก  

. แรงกดน้อย                         . แรงพยายามน้อย

2.แรงที่ต่อต้านการเคลื่อนที่ของวัตถุเรียกว่าอะไร

. แรงดึง                                 . แรงกด                   

. สัมประสิทธิ์                                    . แรงเสียดทาน

3.เหตุใดยางรถยนต์จึงมีลวดลายและผิวขรุขระ
 . เพิ่มแรงเสียดทาน               . ลดแรงเสียดทาน

. ให้ความสวยงาม                 . สะดวกสบายเวลาเปลี่ยนยาง

4.กรณีใดเป็นการเพิ่มแรงเสียดทาน

. บุชในพัดลม                                    . ตลับลูกปืนที่ล้อ
. รองเท้าไม้                           . ยางรถยนต์

5.เมื่อรถวิ่งไปข้างหน้า แรงเสียดทานของถนนจะมีทิศทางใด

 . ทิศทางตรงข้ามกับรถวิ่ง    . ทิศทางเดียวกับรถวิ่ง

. ทิศทางไม่แน่นอน               . พื้นถนนมีแรงเสียดทานทุกทิศทาง

6. เหตุการณ์ใดสนับสนุนข้อความที่ว่า ถ้าไม่มีแรงเสียดทานรถจะแล่นไม่ได้

. รถที่วิ่งขึ้นเขา ต้องเร่งเครื่องมากกว่ารถที่แล่นในที่ราบ
. ขณะรถวิ่งลงจากเขา เมื่อดับเครื่องรถยังวิ่งต่อไปได้
. เมื่อรถวิ่งผ่านถนนที่มีน้ำมันเครื่องหกอยู่เต็ม รถจะหมุนคว้าง
. รถที่แล่นเร็วจะต้องใช้ระยะเบรคไกลกว่ารถที่แล่นช้า

7. ยานพาหนะใดที่มีอัตราการสูญเสียพลังงานขับเฉื่อยมาจากแรงเสียดทานพาหนะขณะเคลื่อนที่มากที่สุด
. รถยนต์                    . เรือ
. ยานอวกาศ              . เครื่องบิน




8.วัตถุหนัก 2 กิโลกรัม วางบนพื้นราบ ที่มีค่าแรงเสียดทาน 2 นิวตันเมื่อออกแรงดึงตามแนวราบ

วัตถุเริ่มเคลื่อนที่พอดีจงหาสัมประสิทธิ์ของแรงเสียดทาน (1 กิโลกรัม = 10 นิวดัน)

. 0.1                           . 1

. 10                            . 40

9. เมื่อออกแรงดึงท่อนไม้หนัก 1 กิโลกรัม ด้วยแรง 5 นิวตัน ท่อนไม้เริ่มเคลื่อนที่ จงหาสัมประสิทธิ์แรงเสียดทาน

. 0.2                           . 0.5
. 2                              . 5

10. เครื่องกลมีประสิทธิภาพในการทำงานต่ำมักมีสาเหตุมาจากอะไร

. แรงเสียดทานมากเกินไป                . แรงพยายามน้อยไป
. งานที่ใช้มากกว่างานที่ให้               . ถูกทุกข้อ

เฉลย

1.                   2.                   3.                   4.                   5.     

6.                  7.                     8.                 9.                   10. 

วันจันทร์ที่ 5 กันยายน พ.ศ. 2559

ประวัติศาสตร์ฟิสิกส์

ประวัติศาสตร์ฟิสิกส์
            ประวัติศาสตร์ของฟิสิกส์ คือ การศึกษาการเติบโตของฟิสิกส์ไม่ได้นำมาเพียงแค่การเปลี่ยนแปลงแนวคิดพื้นฐานเกี่ยวกับโลกแห่งวัตถุ คณิตศาสตร์ และ ปรัชญา เท่านั้น แต่ยังเกี่ยวข้องกับเทคโนโลยี และการเปลี่ยนรูปแบบของสังคม ฟิสิกส์ถูกพิจารณาในแง่ของทั้งตัวเนื้อความรู้และการปฏิบัติที่สร้างและส่งผ่านความรู้ดังกล่าว การปฏิวัติวิทยาศาสตร์ ซึ่งเริ่มต้นประมาณปี ค.ศ. 1600 เป็นขอบเขตง่าย ๆ ระหว่างแนวคิดโบราณกับฟิสิกส์คลาสสิก ในปี ค.ศ. 1900 จึงเป็นจุดเริ่มต้นของฟิสิกส์ยุคใหม่ ทุกวันนี้วิทยาศาสตร์ยังไม่มีอะไรแสดงถึงจุดสมบูรณ์ เพราะการค้นพบที่มากขึ้นนำมาซึ่งคำถามที่เกิดขึ้นจากอายุของเอกภพ ไปถึงธรรมชาติของสุญญากาศ และธรรมชาติในที่สุดของสมบัติของอนุภาคที่เล็กกว่าอะตอม ทฤษฎีบางส่วนเป็นสิ่งที่ดีที่สุดที่ฟิสิกส์ได้เสนอในปัจจุบันนี้ อย่างไรก็ตามรายนามของปัญหาที่ยังแก้ไม่ได้ของฟิสิกส์ ก็ยังคงมีมากอยู่
         
          ฟิสิกส์ยุคแรกเริ่ม
ตั้งแต่แรก ช่วงเวลาของประวัติศาสตร์ ผู้คนพยายามเข้าใจพฤติกรรมของสสาร: ทำไมวัตถุจึงตกลงสู่พื้น ทำไมวัสดุต่างกันจึงมีสมบัติต่างกัน และอื่น ๆ เช่นเดียวกับปริศนาเกี่ยวกับลักษณะของเอกภพ เช่น รูปแบบของโลก และพฤติกรรมของเทหวัตถุบนท้องฟ้า เช่น ดวงอาทิตย์และดวงจันทร์พฤติกรรมและธรรมชาติของโลกมักถูกอธิบายเป็นแบบฉบับว่าเกิดจากการก่อกำเนิดการกระทำของพระเจ้า ในที่สุดแล้วการอธิบายธรรมชาติในทางทฤษฎีถูกสร้างขึ้นมาจากการพิจารณาคำถาม เกือบทั้งหมดผิด แต่นี่เป็นส่วนหนึ่งของธรรมชาติในความกล้าได้กล้าเสียของการอธิบายอย่างเป็นระบบ และแม้กระทั่งทฤษฎียุคใหม่ เช่น กลศาสตร์ควอนตัม และทฤษฎีสัมพันธภาพ ยังถูกพิจารณาเป็นเพียง "ทฤษฎีที่ยังไม่มีใครโค่นล้ม" เท่านั้น ทฤษฎีทางกายภาพในยุคโบราณถูกชี้นำไปในทางปรัชญา และน้อยครั้งที่จะมีการตรวจสอบด้วยการทดสอบทดลองอย่างเป็นระบบ
ฟิสิกส์ยุคใหม่
การปฏิวัติวิทยาศาสตร์ ซึ่งเริ่มต้นจากปลาย คริสต์ศตวรรษที่ 16 สามารถมองเป็นการแบ่งบานของยุคเรเนสซองซ์ และหนทางสู่อารยธรรมยุคใหม่ ส่วนหนึ่งของความรู้เหล่านี้มาจากการค้นพบใหม่จากองค์ประกอบของวัฒนธรรมกรีก อินเดีย จีนและอิสลามซึ่งรักษาและพัฒนาต่อมาโดยโลกอิสลาม  จาก คริสต์ศตวรรษที่ 8 ถึง 15 และแปลโดยพระชาวคริสต์เป็นภาษาละติน เช่น Almagest
การพัฒนาเริ่มด้วยนักวิจัยเพียงส่วนน้อย ซึ่งเกี่ยวพันกันความกล้าได้กล้าเสียซึ่งยังต่อเนื่องมาจนถึงปัจจุบัน เริ่มต้นด้วนดาราศาสตร์ หลักการทางปรัชญาธรรมชาติได้ตกผลึกเป็น กฎทางฟิสิกส์ พื้นฐานซึ่งรวบรวมและพัฒนาในศตวรรษแห่งความสำเร็จ ในคริสต์ศตวรรษที่ 19 วิทยาศาสตร์ได้แบ่งเป็นหลายสาขาโดยนักวิจัยเฉพาะทาง และสาขาทางฟิสิกส์ ถึงแม้ว่าจะดังขึ้นมาก่อนในทางตรรกะ ก็ไม่สามารถอ้างว่าเป็นเจ้าของสาขาทั้งหมดของงานวิจัยทางวิทยาศาสตร์
คริสต์ศตวรรษที่ 16
ใน คริสต์ศตวรรษที่ 16 นิโคลัส โคเปอร์นิคัส ได้ฟื้นแบบจำลองระบบสุริยะที่ดวงอาทิตย์เป็นศูนย์กลาง ของ Aristarchus ในยุโรปขึ้นมา (ซึ่งอยู่รอดในตอนแรกด้วยการพูดถึงใน The Sand Reckoner ของ อาร์คีมีดิส) เมื่อแบบจำลองนี้ถูกตีพิมพ์ในช่วงท้ายชีวิตของเขา มันมีบทนำโดย Andreas Osiander ที่ถืออย่างเคร่งครัดว่ามันเป็นเพียงรูปสะดวกทางคณิตศาสตร์ สำหรับคำนวณตำแหน่งของดาวเคราะห์ และไม่ได้เป็นธรรมชาติจริง ๆ ของวงโคจรดาวเคราะห์เหล่านั้น ในอังกฤษ วิลเลียม กิลเบิร์ต (ค.ศ. 1544-1603) ได้ศึกษา แม่เหล็ก และตีพิมพ์งานต้นแบบ DeMagnete (ค.ศ. 1600) ในนั้นเขาได้แสดงผลการทดลองจำนวนมากอย่างละเอียด
คริสต์ศตวรรษที่ 17
ในช่วงต้น คริสต์ศตวรรษที่ 17 โจ ฮันเนส เคปเลอร์ ได้เขียนสูตรของแบบจำลองระบบสุริยะบนรากฐานของ Platonic solid ห้าดวงโดยพยายามอธิบายว่าทำไมวงโคจรของดาวเคราะห์จึงมีขนาดสัมพัทธ์กันอย่างที่มันเป็นอยู่ การเข้าหาข้อมูลการสังเกตทางดาราศาสตร์ที่แม่นยำสูงของ ไทโค บราห์ทำให้เขาสามารถพิจารณาได้ว่าแบบจำลองของเขาไม่สอดคล้องกับวงโคจรที่สังเกตได้ หลังจากเจ็ดปีแห่งความพยายามอย่างวีรบุรุษในการสร้างแบบจำลองการเคลื่อนที่ที่แม่นยำขึ้นของ ดาวอังคาร (ระหว่างที่เขาเริ่มค้นพบ integral calculus ยุคใหม่) เขาสรุปว่าดาวเคราะห์ไม่ได้เคลื่อนที่ตามวงโคจรแบบวงกลม แต่เป็น วงรี ที่มีดวงอาทิตย์อยู่ตรงโฟกัสของวงรีนั้น การค้นพบนี่เป็นการคว่ำความเชื่อนับพันปีที่ตั้งอยู่บนแนวคิดของ ปโตเลมี ของวงโคจรวงกลม "สมบูรณ์" สำหรับวัตถุแห่งสรวงสวรรค์ "สมบูรณ์" เคปเลอร์ไปถึงการเขียนสูคร กฎสามข้อของการเคลื่อนที่ของดาวเคราะห์ ของเขา เขายังเสนอแบบจำลองของดาวเคราะห์อันแรกที่มีแรงส่งออกมาจากดวงอาทิตย์ดึงดาวเคราะห์จากการเคลื่อนที่ "ธรรมชาติ" ของพวกมัน ทำให้มันเคลื่อนไปตามวงโคจรโค้ง
อุปกรณืที่สำคัญอย่างหนึ่ง คือ เวอร์เนียร์ ซึ่งวัดในงานเชิงกลของมุมและระยะทางได้อย่างแม่นยำ ประดิษฐ์โดยชาวฝรั่งเศสนาม Pierre Vernier ใน ค.ศ. 1631 เวอร์เนียร์ถูกใช้แพร่หลายในห้องปฏิบัติการวิทยาศาสตร์ และร้านเครื่องกลจนกระทั่งทุกวันนี้
Otto von Guericke ได้สร้างเครื่องสูบลมในปี ค.ศ. 1650 และสาธิตฟิสิกส์ของสุญญากาศและความดันบรรยากาศโดยใช้ Magdeburg hemispheres ต่อมาเขาหันไปสนใจใน ไฟฟ้าสถิต และประดิษฐ์อุปกรณ์เชิงกลที่ประกอบด้วยทรงกลมจุซัลเฟอร์ ที่เราสามารถเปิดข้อเหวี่ยงและประจุและลบประจุได้หลายครั้งเพื่อสร้างประกายไฟฟ้า
ในปี ค.ศ. 1656 นักฟิสิกส์และนักดาราศาสตร์ชาวดัตช์ คริสตียาน เฮยเคินส์ ได้ประดิษฐ นาฬิกาเชิงกล โดยใช้ เพนดูลัม ที่แกว่างผ่านส่วนโค้งรูปวงรี ซึ่งใช้พลังงานจากตุ้มถ่วงที่ตก อันนำไปสู่ยุคการจับเวลาให้แม่นยำ
การหาค่าเชิงปริมาณของ อัตราเร็วแสง ครั้งแรกเกิดขึ้นในปี ค.ศ. 1676 โดย Ole Rømer โดยจับเวลาการเคลื่อนที่ของบริวารดาวพฤหัส คือ ไอโอ ด้วยกล้องโทรทรรศน์
ระหว่างช่วงแรกของ คริสต์ศตวรรษที่ 17 กาลิเลโอ กาลิเลอิ ได้บุกเบิกการใช้การทดลองเพื่อตรวจสอบทฤษฎีทางฟิสิกส์ ซึ่งเป็นแนวคิดหลักใน กระบวนการทางวิทยาศาสตร์ การใช้การทดลองของกาลิเลโอ และการยืนยันของกาลิเลโอและเคปเลอร์ว่า ผลการสังเกตย่อมมาก่อนผลทางทฤษฎีใด ๆ (in which they followed the precepts of Aristotle if not his practice) ได้ปัดการยอมรับความเชื่อทางศาสนาออกไป และให้กำเนิดยุคที่แนวคิดทางวิทยาศาสตร์ถูกเปิดกว้างให้ถกเถียงและทดสอบอย่างแน่ชัด กาลิเลโอเขียนสูตรและทดสอบผลการทดลองได้สำเร็จใน พลศาสตร์ รวมทั้งกฎที่ถูกต้องของการเคลื่อนที่ที่มีความเร่ง วิถีการเคลื่อนที่แบบพาราโยลา และสัมพันธภาพของการเคลื่อนที่แบบไม่มีความเร่ง รวมทั้งกฎของ ความเฉื่อย ในแบบแรกเริ่ม
ใน ค.ศ. 1687 ไอแซก นิวตัน ตีพิมพ์ Principia Mathematica, อันมีรายละเอียดของทฤษฎีสองข้อที่ครอบคลุมและประสบความสำเร็จ คือ กฎการเคลื่อนที่ของนิวตัน จากสิ่งที่ทำให้เกิด กลศาสตร์คลาสสิก และ กฎความโน้มถ่วงของนิวตัน ซึ่งบรรยาย แรงพื้นฐาน ของ ความโน้มถ่วง ทั้งสองทฤษฎีเข้ากับผลการทดลองได้ดี กฎความโน้มอ่วงนำไปสู่สาขาวิชา astrophysics ซึ่งบรรยายปรากฏการณ์ทาง ดาราศาสตร์ โดยใช้ทฤษฎีทางฟิสิกส์
อ้างอิง
1.       กระโดดขึ้น Cornelius Lanczos, The Variational Principles of Mechanics (Dover Publications, New York, 1986). ISBN 0-486-65067-7.
2.       กระโดดขึ้น Alpher, Herman, and Gamow. Nature 162, 774 (1948).
3.       กระโดดขึ้น Wilson's Nobel Lecture. Wilson, Robert W. (1978). "The cosmic microwave background radiation" (PDF). สืบค้นเมื่อ 2006-06-07.